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Abstract—It is often assumed that a network will not be struck
by multiple disasters in a relatively short period of time; that is,
a subsequent disaster will not strike within the recovery phase
of a previous disaster. However, recent events have shown that
combinations of disasters are not implausible. This realization
calls for a new perspective on how we assess the vulnerability of
our networks and shows a need for a framework to assess the
vulnerability of networks to successive independent disasters.

We propose a network and disaster model capable of modeling
a sequence of disasters in time, while taking into account recovery
operations. Based on that model, we develop both an exact
and a Monte Carlo method to compute the vulnerability of a
network to successive disasters. By applying our approach to
real empirical disaster data, we show that the probability of
a second disaster striking the network during recovery can be
significant even for short repair times. Our framework is a first
step towards determining the vulnerability of networks to such
successive disasters.

I. INTRODUCTION

Disasters can inflict significant damage on networks. The
2011 earthquake near the coast of Japan, for example, caused
extensive damage to telecommunications buildings and equip-
ment. The total cost of emergency restoration and reconstruc-
tion of the local NTT East network was around 80 billion
yen (1 billion dollars at the time) [1]. Large network outages
such as these can have a massive impact on our economy and
further exacerbate the impact of disasters on society. Hence,
efforts into developing new methods to improve the resilience
of communication networks to disasters have increased signif-
icantly in the last decade.

The rate at which disasters strike an area is typically very
low. Therefore, it is commonly assumed that a network will
only be affected by single (possibly composite1) isolated dis-
asters. The probability that two or more independent disasters
will occur shortly after one another is seen as negligible and
safe to ignore. Recent events have shown that this assumption
might not be as rock solid as first thought.

The 2017 Atlantic hurricane season was extremely active
and, due to global warming, the intensity of hurricanes is
projected to keep increasing [2]. The continental United States
was hit by 3 hurricanes (Harvey, Irma, and Nate), of which
two where categorized as major hurricanes (Harvey and Irma)

1Highly correlated disasters such as an earthquake and its aftershocks, can
be modeled as a single composite disaster.

[3]. Hurricane Irma hit the East Coast only 16 days after
Harvey [4], [5]. Out of the top 5 costliest US mainland tropical
cyclones on record, 3 occurred in 2017 [6].

In total, there were 16 billion-dollar weather and climate
disaster events in the United States in 2017 [7]. The total
cost of these events exceeded 300 billion dollars. For the past
five years (2013-2017), the United States has had an average
of 11.6 major disasters per year with a cost of more than 1
billion dollars.

Also in 2017, Mexico was hit by two major earthquakes
in two weeks (where the second quake is not considered an
aftershock of the first [8]), leading to a combined economic
loss of nearly 6 billion dollars [9], [10].

Recovering a network after a disaster can take several weeks
to months, as a large amount of hardware will need to be
replaced or repaired in a potentially very inaccessible area [1].
In the context of this paper, a network is said to be affected by
multiple successive disasters if a disaster strikes the network
during its recovery from a previous disaster. Depending on the
moment in the recovery phase when the next disaster occurs,
the total impact and final recovery time will differ significantly.

To increase the resilience of our networks to disasters, it is
essential to be able to compute the vulnerability of networks to
these disasters. While previous work has been instrumental in
computing the vulnerability of a network to a single disaster,
it has not addressed multiple successive disasters. In this
paper, we propose a framework to assess the vulnerability of
a network to successive disasters. Our main contributions are
as follows:

• We compose a network and disaster model capable of
modeling a sequence of disasters in time (Sec. II).

• We develop a method to compute the vulnerability of a
network to successive disasters by modeling the network
state as a discrete-time Markov chain (Sec. IV). Our
methodology allows for arbitrary precision by only com-
puting the effect of at most k successive disasters, with
corresponding error bounds. Our results for the Markov
chain are subsequently used to derive a faster Monte
Carlo method in Sec. V.

• We apply our methods to empirical disaster data in Sec.
VI. These experiments show that the probability of a
second disaster striking the network during recovery can
be significant, even for short repair times.ISBN 978-3-903176-08-9 c©2019 IFIP



To the best of our knowledge, we are the first to propose
models and methods for assessing the impact of successive
disasters on networks, while taking into account recovery
operations.

II. NETWORK AND DISASTER MODEL

We model the network as a directed multigraph G =
(V,E, ψ) with nodes v 2 V connected by links e 2 E, where
ψ : E ! V � V and e 2 E connects v1 to v2 if and only if
ψ(e) = (v1, v2). Thus, we permit the same pair of nodes to be
connected by multiple links. We define a failure set s, where
network component c 2 V [ E is functioning if and only if
c /2 s. In the remainder of the paper, we refer to the failure
set of a network as the state of that network.

Given such a network, we are interested in three factors: (1)
the number of successive disasters we can expect the network
to be struck by, (2) the impact of being struck by one or more
disasters, and (3) the total time it takes to fully recover from
these disasters. To assess these attributes, we need to model
the occurrence of disasters over time.

The occurrence of disasters is inherently unpredictable.
A common stochastic model for disaster occurrences [11]–
[13], which we will also employ, is the Poisson process. We
model all disaster processes as mutually independent Poisson
processes and assume we are given a multiset of disaster
processes d = (ad, λd) 2 D∗, where ad � V [ E are the
components affected by d and λd is the rate of d.

If disaster process d triggers at time t, when the network
state is s, the new network state at time t will be s[ ad. That
is, all components in ad fail. We assume at most one disaster
can strike the network at any given time t.

The combination of multiple Poisson processes is again
Poissonian, with as rate the sum of its component rates.
Thus, we can merge all disaster processes that affect the same
components without affecting the outcome of our analysis.
Hence, we transform the set D∗ to

D = f(ad, λd)jad 6= ; ^ λd =
X

(ad;�d� )∈D�

λd� > 0g (1)

Let (Tn)∞n=1 be the ordered sequence such that T1 is the
occurrence time of the first disaster, and for all n > 1, Tn
is the time between disasters n � 1 and n. Let (Dn)∞n=1 be
the ordered sequence of disasters. In other words, the first
disaster D1 2 D occurs at time T1 2 R, the second D2 2 D
at T1 + T2 2 R, etc. Then, for all n 2 N:

Tn � Exp(λD) (where λD :=
X

(ad;�d)∈D

λd) (2)

the Tn are exponentially distributed with rate λD, and Dn and
Tn are independent for all n 2 N:

P (Dn = d ^ Tn = t) = P (Dn = d)P (Tn = t) (3)

A. Example Network and Disasters Instance

To illustrate our network and disaster model, we give an
example in Fig. 1. We consider a small triangle network of 3
nodes and 3 links. Its representative set of disasters contains

four (types of) disasters. As each of these disasters affects a
different set of components, D∗ = D. The total disaster rate
is λD = 1.6 disasters per year.

A network topology and set of disasters are not sufficient
to properly compute the vulnerability of the network to suc-
cessive disasters, as the impact of these disasters significantly
depends on how quickly, and in what order, the network can be
repaired. Thus, we also need to include some repair properties.

Our framework can include any repair function, but in the
example the following repair rules hold: nodes can be repaired
in half a month, while links take a full month to repair, and
repairs are performed according to a predetermined priority
and cannot be performed concurrently.

III. PROBLEM STATEMENT

We consider a deterministic repair model. We assume that,
given a certain starting state, the recovery of the network is
fixed (until a new disaster occurs). For example, if disaster 4
of the example instance occurs, all nodes will be damaged.
Afterwards, the nodes will be repaired one by one. Thus,
unless another disaster occurs during repair, the state of the
network will be
• fn1, n2, n3g at time 0
• fn2, n3g at time 1

24
• fn3g at time 2

24
• ; at time 3

24

Generalizing the above example, we define repair functions
rs0 : R+ ! V [ E for each s0 2 V [ E. r(t)s0 2 V [ E is
the state of the network at time t+ C, given that the state of
the network was s0 after being struck by a disaster at some
time C. We assume the network does not degrade further in
the recovery phase:

r(b)s0
� r(a)s0

0 � a � b, s0 2 V [ E (4)

Different repair strategies can be compared by changing
the repair functions. Additionally, by increasing the amount
of components being repaired simultaneously, the benefits of
acquiring more personnel can be assessed and compared to
the additional cost in salary.

In the following, we elaborate on our research objectives
with respect to three properties.

A. Number of Successive Disasters N

Network operators should decide on how many successive
disasters they prepare for. To do so, knowing the probability
of at least n successive disasters is essential. In addition, the
expected number of successive disasters is also of interest.
Hence, our goal is to compute P (N � n), as well as E[N ].

B. Impact

While knowing the expected number of successive disasters
is useful, it is also important to consider their impact. Suppose
we have a measure M : V � E ! [0, 1] that assigns a value
M(s) between 0 (worst case) and 1 (best case) to each state
s of the network. We require that M(a) �M(b) if b � a.



n1 n2

n3

e1

e2e3

Network: Disasters:
d ad λd
1 fn1, e1, e3g 0.5
2 fn2, e1, e2g 0.5
3 fn3, e2, e3g 0.5
4 fn1, n2, n3g 0.1

Repair:
Concurrently: no
Node repair time: 1

24
Link repair time: 1

12
Repair order: n1 > n2 > n3

> e1 > e2 > e3

Instance:

Fig. 1. Example problem instance.

We analyze the minimum value of M during the disaster-
and-recovery process. In the one-disaster case, this would
simply be the value of M directly after the disaster. Successive
disasters, although rare, can have a significantly higher impact
on the network than single disasters. Therefore, given a critical
value m, we want to compute the probability that the network
reaches a state at least as bad as m during the disaster-
and-recovery process, P (Mmin � m), where Mmin is the
minimum value of M between T1 and full recovery.

C. Total Time to Full Recovery

Let Ttotal be the total repair time, from the start of the
first disaster to the time when all damage from all previous
disasters has been repaired. We aim to compute the expected
time to full recovery, E[Ttotal].

IV. ANALYSIS

In this section, we describe methods for computing the
properties introduced in the previous section by modeling
the state of the network as a Discrete-Time Markov Chain
(DTMC).

A. Markov Chain

Let An be the state of network G directly after the nth dis-
aster strikes the network. Now, because the disaster processes
are independent and memoryless, and the repair function is
deterministic,

P (An = anjA1 = a1, A2 = a2, . . . , An−1 = an−1) =

P (An = anjAn−1 = an−1)
(5)

that is, (An)∞n=1 satisfy the Markov property and form a
(discrete-time) Markov chain.

The transition probabilities of this Markov chain depend on
which disaster strikes next, as well as at which stage of the
repair process this disaster strikes. By property (3), these two
factors are independent. Thus, the transition probabilities can
be calculated by summing over all possible disasters d 2 D:

P (An = anjAn−1 = an−1) =X
d∈D

λd
λD

(exp(�λDMan�1;d;an
)� exp(�λDSan�1;d;an

))

(6)

Here, �d

�D
is the probability that the network will be struck

by disaster d = (ad, λd). [Man�1;d;an ,San�1;d;an) is the

period of time during which the occurrence of disaster d
will result in network state an and exp(�λDMan�1;d;an) �
exp(�λDSan�1;d;an

) the probability that the next disaster will
occur in this period of time2.

We are specifically interested in the chain of network states
until full recovery. Thus, we construct an additional Markov
chain (Sn)∞n=1 by adding an absorbing state ; to (An)∞n=1

such that Sn = ; if and only if the network has been fully
repaired.

Let Rs := minft � 0jr(t)s = ;g be the time it takes
to fully repair the network (assuming no subsequent disasters
occur), starting from network state s 2 V [ E. The proba-
bility that, starting in state s, the network is fully recovered
before the next disaster strikes is exp(�λDRs). Therefore, the
transition probabilities to the absorbing state ; are

P (Sn = ;jSn−1 = sn−1) =

(
1 if sn−1 = ;
exp(�λDRsn�1

) if sn−1 6= ;
(7)

and the transition probabilities to all other states are

P (Sn = sn 6= ;jSn−1 = sn−1) =8>><>>:
0 if sn−1 = ;P
d∈D

�d

�D
(exp(�λD min(Msn�1;d;sn

, Rsn�1
))

� exp(�λD min(Ssn�1;d;sn
, Rsn�1

))) if sn−1 6= ;
(8)

S1 = A1 = aD1
, so the initial distribution of the Markov

chain (Sn)∞n=1 is

P (S1 = s1) =

(
�d

�D
9d 2 D s.t. ad = s1

0 otherwise
(9)

B. Number of Successive Disasters N

We can now compute the probability P (N � n) = 1 �
P (Sn = ;) of at least n successive disasters without full
recovery. This probability decreases exponentially with n.

Lemma 1:

P (N � n) � (1� exp(�λDR))n−1 (10)

2Man�1;d;an is the first time at which ran�1 ∪ ad = an (or ∞ if no
such time exists), and San�1;d;an is the first time after Man�1;d;an at
which ran�1 ∪ ad 6= an (or ∞).



where R := max
s⊆V ∪E

Rs.

Proof: See Appendix.
Remark 1: If Rs = R 8s 2 V [ E � ;, then

P (N � n) = (1� exp(�λDR))n−1

Typically, R = max
s⊆V ∪E

Rs will be the amount of time it takes

to repair all network components (RV ∪E).
Unfortunately, computing E[N ] directly is intractable in

most cases, as the number of possible states can be as high
as 2|V |+|E|. However, we can approximate (from below) the
expected number of successive disasters by only constructing
the Markov model for k successive disasters and computing
the distribution of S1 to Sk. The choice of k depends on the
required accuracy.

Theorem 1 (Stopping conditions 1): Let Ê[N ] =
kP

n=1
P (N � n), then

0 � E[N ]� Ê[N ] � (1� exp(�λDR))k

exp(�λDR)
(11)

In addition, if P (N � k) � ε exp(−�DR)
1−exp(−�DR) , then

E[N ]� Ê[N ] � ε (12)

Proof: We start by proving (11).

E[N ]� Ê[N ] =

∞X
n=k+1

P (N � n)

�
∞X

n=k+1

(1� exp(�λDR))n−1 (Lemma 1)

=
(1� exp(�λDR))k

exp(�λDR)

If P (N � k) � ε exp(−�DR)
1−exp(−�DR) , then (for n � k):

P (N � n) � ε exp(�λDR)(1� exp(�λDR))n−k−1

This can be proved analogously to Lemma 1. But this means
that the absolute error

E[N ]� Ê[N ]

�
∞X

n=k+1

ε exp(�λDR)(1� exp(�λDR))n−k−1

=

∞X
n=0

ε exp(�λDR)(1� exp(�λDR))n

= ε

Thus, to guarantee an upper bound on the absolute error,
we can either choose the number of steps k beforehand, or
test if P (N � k) is below the threshold after every iteration,
where the latter requires fewer iterations than the former.

C. Impact

As M is minimal directly after a disaster,
Mmin = min

n
M(Sn). The cumulative distribution

function P (Mmin � m) is the hitting probability of
M≤m := fs 2 V � EjM(s) � mg. We can take a similar
approach as before and approximate these probabilities as

P̂ (Mmin � m) := P (Mk
min � m) (13)

where Mk
min = min

n≤k
M(Sn).

Suppose we have computed the first k states and correspond-
ing transition probabilities of the Markov chain (Sn)∞n=1. To
compute P (Mk

min � m) we construct a new Markov chain
(S≤mn )∞n=1 by replacing all s 2M≤m with a single absorbing
state A≤m. Now,

P (Mk
min � m) = P (S≤mk = A≤m) (14)

Theorem 2 (Stopping conditions 2): Let

P̂ (Mmin � m) = P (Mk
min � m) = P (S≤mk = A≤m)

Then

0 � P (Mmin � m)� P̂ (Mmin � m) �
1� P̂ (Mmin � m)� P (S≤mk = ;) � P (N � k)

� (1� exp(�λDR))k−1

(15)

Proof: If m � 1, then
P (Mmin � m) = P̂ (Mmin � m) = 1, so we assume that
m < 1.

In this case

P (Mmin � m)� P̂ (Mmin � m)

= P (Mmin � m)� P (Mk
min � m)

= P (Mmin � m ^Mk
min > m)

� 1� P (Mk
min � m)� P (S≤mk = ;)

� P (N � k)

D. Total Time to Full Recovery

The total time to full recovery, or the total repair time, Ttotal,
is equivalent to the sum of the time spent on repair in all states
of (Sn)∞n=1:

Ttotal =

∞X
n=1

Rn (16)

where Rn is the time spent on repairs between the nth and
(n + 1)th disaster. Thus, Rn is 0 if Sn = ; and Rn is the
minimum between the total repair time of failures Sn and the
time till the next disaster otherwise:

Rn =

(
0 if Sn = ;
min(RSn

, Tn+1) if Sn 6= ;
(17)



The expected value of Rn is

E[Rn] =X
s6=∅

P (Sn = s)(

RsZ
0

λD exp(�λDt)tdt+ exp(�λDRs)Rs)

=
X
s 6=∅

P (Sn = s)(
1

λD
(1� exp(�λDRs)))

=
1

λD

X
s6=∅

P (Sn = s)(1� exp(�λDRs))

(18)

As before, we propose approximating E[Ttotal] by trun-
cating (16). That is, we approximate E[Ttotal] by summing
the expected values of R1 to Rk, which only requires the
distributions of S1 to Sk.

Theorem 3 (Stopping conditions 3): Let Ê[Ttotal] :=
kP

n=1
E[Rn], then

0 � E[Ttotal]� Ê[Ttotal] �
(1� exp(�λDR))k

λD exp(�λDR)
(19)

In addition, if P (N � k) � ελD exp(−�DR)
1−exp(−�DR) , then

E[Ttotal]� Ê[Ttotal] � ε (20)

Proof: By the monotone convergence theorem,

E[Ttotal] = E[

∞X
n=1

Rn] =

∞X
n=1

E[Rn]

In addition, by (18), E[Rn] � 1
�D
P (N � n).

Now, the proof follows analogously to that of Theorem 1.

V. MONTE CARLO

The Markov chain in Sec. IV has a large number of states.
Most of these states have a very small probability of ever being
reached. However, we can not simply ignore these states, as
the aggregate of their probabilities is relatively high. This is a
perfect use case for Monte Carlo simulations.

We propose an efficient Monte Carlo method, based on
the results from Sec. IV, for estimating P (N � n), E[N ],
E[Mmin], and E[Ttotal]. The method is given in detail in Fig.
2. The main idea is to simulate many sequences of successive
disasters simultaneously, and cut off these sequences when
the error bounds on the values of interest are small enough.
As all sequences are cut off after the same number n of
successive disasters, we only allow transitions to subsequent
disaster states and keep track of the probability of reaching the
absorbing state separately. This allows us to closer estimate the
values of interest.

In essence, we approximate the lower bounds described in
Sec. IV. By Theorems 1 to 3, these lower bounds, combined
with P (N � n), give us the upper bounds as well. The method
can be tuned with respect to two values: Stopping condition

Input: Number of simulations η, and bound β
Output: P̂ (N � n), Ê[N ], P̂ (Mmin � m), Ê[Mmin], and
Ê[Ttotal]
Let Statei;j be the network state in simulation i after the
jth disaster
P̂ (N � 1) 1
P̂ (Mmin � m) 0
for i = 1 to i = η do

Sample starting state Statei;1 from S1

Pi;1  1
Mi;1  M(Statei;1)
if Mi;i � m then
P̂ (Mmin � m) P̂ (Mmin � m) + 1

�
end if

end for
n 1
while P̂ (N � n) > β do
n n+ 1
for i = 1 to i = η do
P (Sn = ;) exp(�λDRStatei;n�1)
Pi;n  Pi;n−1(1� P (Sn = ;))
Sample next disaster occurrence time Tn, conditioned
on Tn < RStatei;n�1

Compute Statei;n, given occurrence time Tn
Mi;n  min(Mi;n−1,M(Statei;n))
if Mi;n−1 > m and Mi;n � m then
P̂ (Mmin � m) P̂ (Mmin � m) + 1

�Pi;n
end if

end for
P̂ (N � n) 1

�

�P
i=1

Pi;n

end while
Ê[N ] 

nP
j=1

P̂ (N � n)

Ê[Mmin] 
�P
i=1

n−1P
j=1

Pi;j exp(�λDRStatei;j )Mi;j

Ê[Mmin] 1
� Ê[Mmin] + 1

�

�P
i=1

Pi;nMi;n

Ê[Ttotal] 1
��D

�P
i=1

nP
j=1

Pi;j(1� exp(�λDRStatei;j ))

Fig. 2. Monte Carlo method for estimating P (N ≥ n), E[N ], P (Mmin ≤
m), E[Mmin], and E[Ttotal].

β gives the maximum difference between the approximated
bounds, while the number of simulations η can be adjusted
to affect the accuracy of the approximation of the bounds
itself. When the probability of subsequent disasters is too
high, lowering β can keep computation times manageable by
reducing the number of successive disasters taken into account.

VI. EXPERIMENTS

To demonstrate our methods, we apply them to a version
of the Sinet topology (Fig. 3) from the Topology Zoo [14],
where all nodes without geographical information have been
removed. This backbone network of 47 nodes connected by




